МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор ИШЭ А.С. Матвеев 2022 г.

программа вступительного испытания в аспирантуру по специальности
1.3.17. Химическая физика, горение и взрыв, физика экстремальных состояний вещества

Заведующий ОАиД	9#537	А.В. Барская
Заведующий кафедрой - руководитель отделения на правах кафедры	13mg	А.С. Заворин
Руководитель ООП	amph	П.А. Стрижак

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ПОСТУПАЮЩИХ В АСПИРАНТУРУ

Программа вступительного испытания по специальности 1.3.17. Химическая физика, горение и взрыв, физика экстремальных состояний вещества предназначена для поступающих в аспирантуру в качестве руководящего учебно-методического документа для целенаправленной подготовки к сдаче вступительного испытания.

Целью проведения вступительных испытаний является оценка знаний, готовности и возможности поступающего к освоению программы подготовки в аспирантуре, к самостоятельному выполнению научной работы, подготовке и защите диссертации на соискание ученой степени кандидата наук. Поступающий в аспирантуру должен продемонстрировать высокий уровень практического и теоретического владения материалом вузовского курса по дисциплинам направления «Теплоэнергетика и теплотехника»: «Физико-химические свойства натуральных топлив», «Экспериментальные исследования процессов преобразования твердых топлив», «Современные проблемы теплоэнергетики», «Инженерный эксперимент», «Экспериментальные исследования тепломассообменных и газодинамических процессов», «Физико-химические основы тепломассообменных процессов».

СОДЕРЖАНИЕ И СТРУКТУРА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО СПЕЦИАЛЬНОСТИ 1.3.17. ХИМИЧЕСКАЯ ФИЗИКА, ГОРЕНИЕ И ВЗРЫВ, ФИЗИКА ЭКСТРЕМАЛЬНЫХ СОСТОЯНИЙ ВЕЩЕСТВА

Вступительное испытание проводится в форме компьютерного тестирования.

Тестирование длится 60 минут без перерывов. Отсчёт времени начинается с момента входа соискателя в тест. Инструктаж, предшествующий тестированию, не входит в указанное время. У каждого тестируемого имеется индивидуальный таймер отсчета. Организаторами предусмотрены стандартные черновики, использование любых других вспомогательных средств запрещено.

Тест состоит из 35 тестовых заданий базовой сложности разных типов: с выбором одного или нескольких верных ответов из 3—7 предложенных, на установление верной последовательности, соответствия, с кратким ответом.

Распределение заданий в тесте по содержанию представлено в Таблице 1.

Структура теста по специальности 1.3.17. Химическая физика, горение и взрыв, физика экстремальных состояний вещества

Таблица 1

№	Модуль теста	Содержательный блок (Контролируемая тема)	Кол-во заданий в билете	Мак- си- маль- ный балл за мо- дуль	Весо- вой ко- эффи- циент	Итого- вый балл за экза- мен
, Техническая	Идеальный газ. Первый закон термодина- мики	2		1,79	100	
	Второй закон термодинамики	1				
1	термодинамика	Реальные газы. Водяной пар	3	18		
	термодинамика	Истечение газов и паров. Газовые циклы	2			
		Циклы холодильных установок. Холодильная и криогенная техника	1			
		Основные положения теории теплообмена	1			
		Теплопроводность при стационарном и не- стационарном тепловых режимах	1			
2	Теплопередача	Основные положения конвективного теплообмена. Основы теории подобия	2	8		
		Теплообмен при фазовых превращениях	2			
		Теплообмен излучением	2			

3	Тепломассооб-	Теплообменные аппараты	1	7		
	менное обору-	Физико-химические основы процессов хи-	3			
	дование	мических технологий	3			
4	Строение веще-	Строение и свойства веществ, природа вза-	1	5		
	ства, основы	имодействия в кристаллах	1			
	химической ки-	Механизм и скорость химической реакции	3			
	нетики	Теория фазовых переходов	1			
5		Теория процессов горения	2			
		Теория теплового взрыва	1			
	Химическая	Процессы воспламенения и зажигания	1			
	физика горения	Теория горения газовой смеси	1	18		
	и взрыва	Горение неперемешанных газов, твердых и	2			
		жидких веществ				
		Ударные волны и детонация	2			
		ИТОГО	35	56		

СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ

- 1. Williams F.A. Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, Second Edition. USA, Princeton University, 2018. 680 p.
- 2. Mishra D.P. Experimental combustion: An introduction. Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, India, 2014. 344 p.
- 3. McAllister S., Chen J-Y., Fernandez-Pello A.C. Fundamentals of Combustion Processes. New York (USA): Springer, 2011.
- 4. Франк-Каменецкий Д.А. Основы макрокинетики. Диффузия и теплопередача в химической кинетике. Долгопрудный: Издательский дом «Интеллект», 2008. 408 с.
- 5. Варнатц Ю.М. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ. М.: Физматлит, 2006. 352 с.
- 6. Ассовский И.Г. Физика горения и внутренняя баллистика. М.: Наука, 2005. 357 с.
- 7. Глушков Д.О., Кузнецов Г.В., Стрижак П.А. Зажигание органоводоугольных топливных композиций. Отв. ред. А.Р. Богомолов; Мин-во образования и науки РФ, Национальный исследовательский Томский политехнический ун-т. Новосибирск: Изд-во СО РАН, 2017. 460 с.
- 8. Кузнецов Г.В., Стрижак П.А. Зажигание конденсированных веществ при локальном нагреве. Мин-во образования и науки РФ, Национальный исследовательский Томский политехнический ун-т. Новосибирск: Изд-во СО РАН, 2010. 269 с.
- 9. Глушков Д.О., Стрижак П.А., Чернецкий М.Ю. Органоводоугольное топливо: проблемы и достижения (Обзор) // Теплоэнергетика. 2016. № 10. С. 31–41.
- 10. Natan B., Rahimi S. The status of gel propellants in year 2000, K.K. Kuo, L.T. DeLuca (Eds.), Combustion of Energetic Materials. New York: Begell House, 2002, 172–194.
- 11. Vilyunov V.N., Zarko V.E. Ignition of Solids. Amsterdam: Elsevier Science Publishers, 1989. 442 p.
- 12. Химия горения / Под ред. У. Гардинера. М.: Мир, 1988. 461 с.
- 13. Вилюнов В.Н. Теория зажигания конденсированных веществ. Новосибирск: Наука. Сиб. отд-ние, 1984. 190 с.
- 14. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980.
- 15. Кумагаи C. Горение. M.: Химия, 1979. 255 c.
- 16. Кутателадзе С.С. Основы теории теплообмена. М.: Атомиздат, 1979. 416 с.
- 17. Мальцев В.М., Мальцев М.Н., Кашпоров Л.Я. Основные характеристики горения. М.: Химия, 1977. 320 с.
- 18. Кондратьев В.Н., Никитин Е.Е. Кинетика и механизм газофазных реакций. М.: Наука, $1974.-558~\mathrm{c}.$
- 19. Беляев А.Ф., Боболев В.К. Переход горения конденсированных систем и взрыв. М.: Наука, 1973.
- 20. Новожилов Б.Н. Нестационарное горение твердых ракетных топлив. М.: Наука, 1973.

- 21. Вильямс Ф.А. Теория горения. М.: Наука, 1971. 615 с.
- 22. Похил П.Ф., Мальцев В.М., Зайцев В.М. Методы исследования процессов горения и детонации. М.: Наука, 1969. 304 с.
- 23. Похил П.Ф., Мальцев В.М., Зайцев В.М. Методы исследования процессов горения и детонации. М.: Наука, 1969.
- 24. Льюис Б., Эльбе Г. Горение, пламя и взрывы в газах. М.: Мир, 1968.
- 25. Бахман Н.Н., Беляев А.Ф. Горение гетерогенных конденсированных систем. М.: Наука, 1967.
- 26. Манелис Г.Б., Назин Г.М., Рубцов Ю.И., Струнин В.А. Термическое разложение и горение взрывчатых веществ и порохов. М.: Наука, 1996.

ОБРАБОТКА РЕЗУЛЬТАТОВ

Проверка правильности выполнения заданий всех частей производится автоматически по эталонам, хранящимся в системе тестирования.