МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

по группе научных специальностей программ подготовки научных и научно-педагогических кадров в аспирантуре

2.6. Химические технологии, науки о материалах, металлургия

Шифр	Научная специальность
2.6.1.	Металловедение и термическая обработка металлов и сплавов
2.6.5.	Порошковая металлургия и композиционные материалы
2.6.6.	Нанотехнологии и наноматериалы
2.6.8.	Технология редких, рассеянных и радиоактивных элементов
2.6.10.	Технология органических веществ
2.6.12.	Химическая технология топлива и высокоэнергетических веществ
2.6.13.	Процессы и аппараты химических технологий
2.6.14.	Технология силикатных и тугоплавких неметаллических материалов

Руководитель программы аспирантуры 2.6.1.	С.П. Буякова
Руководитель программы аспирантуры 2.6.5.	С.В. Панин
Руководитель программы аспирантуры 2.6.6.	О.Л. Хасанов
Руководитель программы аспирантуры 2.6.8.	И.И. Жерин
Руководитель программы аспирантуры 2.6.10.	В.Т. Новиков
Руководитель программы аспирантуры 2.6.12.	А.В. Чузлов
Руководитель программы аспирантуры 2.6.13.	Н.С. Белинская
Руководитель программы аспирантуры 2.6.14.	Т.С. Петровская

1. Общие положения

1.1. Программа вступительного испытания по специальной дисциплине соответствующей группе научных специальностей 2.6. Химические технологии, науки о материалах, металлургия предназначена для поступающих в аспирантуру в качестве руководящего учебно-методического документа для подготовки к сдаче вступительного испытания.

Целью проведения вступительных испытаний является оценка знаний, готовности и возможности поступающего к освоению программы подготовки в аспирантуре, к самостоятельному выполнению научной работы, подготовке и защите диссертации на соискание ученой степени кандидата наук.

Поступающий в аспирантуру должен продемонстрировать высокий уровень владения материалом вузовского курса по дисциплинам направления Химические технологии, науки о материалах, металлургия, а также способности и мотивацию к проведению самостоятельных научных исследований и написании кандидатской диссертации.

- 1.2. Программой устанавливается:
 - форма, структура, процедура сдачи вступительного испытания;
 - шкала оценивания;
 - максимальное и минимальное количество баллов для успешного прохождения вступительного испытания;
 - критерии оценки ответов.

Вступительное испытание проводится на русском языке или на английском языке для абитуриентов из стран дальнего зарубежья, поступающих на программу, реализуемую на английском языке.

- 1.3. Организация и проведение вступительного испытания осуществляется в соответствии с Порядком проведения вступительных испытаний для поступления на обучение по программам подготовки научных и научно-педагогических кадров в аспирантуре ТПУ.
- 1.4. По результатам вступительного испытания, поступающий имеет право подать на апелляцию о нарушении, по мнению поступающего, установленного порядка проведения вступительного испытания и (или) о несогласии с полученной оценкой результатов вступительного испытания в порядке, установленном Порядком приема, действующими на текущий год поступления.

2. Структура и содержание вступительного испытания

- 2.1. Вступительное испытание состоит из двух частей:
 - теоретическая часть по вопросам (билетам), относящимся к научной специальности, на которую поступает абитуриент, каждый билет включает 2 вопроса.
 - собеседование с предоставлением рекомендательного письма (при наличии) предполагаемого научного руководителя и мотивационного письма от абитуриента (при наличии).
- 2.2. Экзамен проводится дистанционно (при условии идентификации поступающих) малочисленными группами не более 5 чел.
 - Перед началом экзамена поступающий предоставляет комиссии мотивационное письмо (при наличии), рекомендательное письмо предполагаемого научного руководителя (при наличии). Далее поступающим выдаются билеты и дается время на подготовку.
 - В это время комиссия изучает представленные письма.
- 2.3. После подготовки поступающих по билетам комиссия заслушивает ответы поступающих по теоретической части и проводит собеседование. Результаты вступительного испытания суммируются и оформляются протоколом, в котором

фиксируются баллы за теоретическую часть и собеседование. На усмотрение членов комиссии собеседование может проводиться с каждым поступающим индивидуально, в таком случае остальные поступающие переводятся в "комнату ожидания" либо временно отключаются от видеоконференции.

Запись проведения ВИ обязательна для дальнейшего просмотра при возникновении спорных ситуаций.

3. Перечень вопросов по научным специальностям для подготовки к сдаче вступительного испытания

2.6.1. Металловедение и термическая обработка металлов и сплавов

- 1. Теория кристаллического строения твердых тел (основные типы связи в твердых телах; типы кристаллических решеток и их характеристики, элементарная ячейка и ее параметры, и ндицирование кристаллических структур).
- 2. Реальные кристаллы (реальное строение кристаллов. Дефекты кристаллического строения; типы дефектов (точечные, линейные, поверхностные, объемные).
- 3. Диффузия в твердых телах (роль точечных дефектов в диффузии, уравнения Фика, физическая природа коэффициента диффузии, диффузия в градиентных полях, механизмы диффузии в твердых телах, роль диффузии при получении сплавов).
- 4. Теория пластичности и прочности твердых тел (теоретическая прочность твердых тел и ее физический смысл, методы оценки теоретической прочности, дислокации и прочность реальных твердых тел, вектор Бюргерса и его свойства, хрупкое и вязкое разрушение. Пути и способы упрочнения металлов).
- 5. Плавление и кристаллизация (структура и свойства жидких металлов, гомогенное и гетерогенное зарождение кристаллов, критический размер зародыша, эвтектическая кристаллизация, образование метастабильных фаз при кристаллизации, бездиффузионная кристаллизация, металлические стекла, строение металлического слитка, Модифицирование структуры литых сплавов. Зональная и местная ликвация. Неметаллические включения и газы в слитке).
- 6. Теория деформационного упрочнения материалов (диаграммы нагружения материалов; критические точки и стадии диаграмм нагружения; общий принцип описания деформационного упрочнения; теории стадий деформации моно- и поликристаллов; структурные изменения в материалах при пластической деформации; наклеп; мегапластическая деформация, наноструктурирование; возврат и рекристаллизация; холодная и горячая пластические деформации).
- 7. Основы теории сплавов (твердые растворы замещения, внедрения и вычитания, упорядоченные твердые растворы, электронные соединения, фазы Лавеса, σфазы, фазы внедрения, диаграммы состояния двойных и тройных систем).
- 8. Фазовые превращения в твердом состоянии (фазовые переходы, полиморфные превращения, фазовые превращения при нагреве, диаграммы изотермических превращений термокинетические диаграммы).
- 9. Термическая обработка (закалка без полиморфного превращения; критическая скорость охлаждения; закалка на мартенсит; термодинамика, механизм и кинетика мартенситного превращения; эвтектоидное превращение (механизм и кинетика); бейнитное превращение (механизм и кинетика); старение; зоны Гинье-Престона, промежуточные метастабильные фазы).
- 10. Свойства материалов (физические, химические, механические, технологические и эксплутационные).

2.6.5. Порошковая металлургия и композиционные материалы

- 11.Получение порошков и их свойства (классификация методов получения порошков, восстановление химических соединений металлов, свойства металлических порошков)
- 12. Подготовка порошков к формованию (основные операции подготовки)
- 13. Процессы производства спеченных материалов и изделий (процессы подготовки порошков к прессованию; процессы формования изделий из порошков; спекание; методы и приборы для контроля порошковых материалов)
- 14. Порошковые материалы (пористые материалы, беспористые и малопористые антифрикционные материалы, фрикционные материалы, электрические и магнитные материалы, тугоплавкие металлы, инструментальные материалы, твердые сплавы)
- 15. Жидкофазное спекание. Горячее прессование. Активированное спекание
- 16. Классификация и маркировка порошковых композиционных материалов (порошковые конструкционные материалы, маркировка порошковых материалов на основе железа, сталей, цветных металлов; классификация и маркировка металлокерамических твердых сплавов)
- 17. Композиционные материалы (классификация композитов; дисперсноупрочненные композиты, волокнистые композиты, многослойные композиты, направленно закристаллизованные композиты)
- 18. Процессы формирования покрытий (общая характеристика основных методов нанесения покрытий, модифицирование поверхности, физико-химические основы процессов формирования покрытий)
- 19. Технологии нанесения покрытий (газотермическое напыление; детонационное напыление; плазменное напыление)
- 20. Исследование покрытий (с помощью растровой электронной микроскопии и энергодисперсионного анализа)

2.6.6. Нанотехнологии и наноматериалы

- 1. Методы сверху-вниз и снизу-вверх. Дробление, травление, литография, самосборка, эпитаксия, синтез, функционализация поверхности.
- 2. Нанотрубки, нановолокна: углеродные, из нитрида бора. Одностенные и многостенные нанотрубки. Типы проводимости нанотрубок. Физикомеханические свойства нанотрубок.
- 3. Фундаментальное отличие масштаба наночастиц от размеров молекул и крупнокристаллических материалов.
- 4. Классификация материалов по размерам структурных элементов. Классификация типов объемных наноматериалов.
- 5. Силы трения и методы их регулирования в процессах компактирования сухих порошков.
- 6. Быстрые методы консолидации нанопорошков с сохранением наноструктуры спеченных материалов.
- 7. Типы функциональных керамик и роль наноструктуры в формировании свойств керамик, композитов. Критические размеры зёрен в функциональных керамиках.
- 8. Классические и квантовые механизмы, определяющие свойства наноструктур. Размерность наноструктур (3D, 2D, 1D, 0D).
- 9. Механизмы проводимости в нанокомпозитах. Влияние состояния поверхности на свойства наноматериалов.
- 10. Оптические свойства наноструктур. Зависимость оптических свойств наноструктур от размера на модели потенциальной ямы. Оптические свойства металлических наноструктур.

2.6.8. Технология редких, рассеянных и радиоактивных элементов

- 1. Общая схема переработки урановых руд.
- 2. Методы получения металлов редких элементов из их галогенидов.
- 3. Методы обогащения урановых руд.
- 4. Очистка тугоплавких металлов иодидным методом.
- 5. Карбонатное и сернокислотное выщелачивание в технологии урана.
- 6. Методы разделения редкоземельных элементов.
- 7. Экстракция урана их сернокислотных и карбонатных растворов.
- 8. Методы переработки упорных минералов редких элементов.
- 9. Ионообменное извлечение урана из карбонатных и сернокислотных растворов.
- 10. Аффинаж золота и серебра.

2.6.10. Технология органических веществ

- 1. Характеристика сырья для производства органических веществ.
- 2. Основные показатели технологических процессов и реакторов.
- 3. Характеристика галогенирующих агентов.
- 4. Методы производства хлористого винила.
- 5. Теоретические основы алкилирования ароматических соединений.
- 6. Классификация и характеристика окислительных агентов.
- 7. Классификация катализаторов реакций гидрирования и дегидрирования.
- 8. Теоретические основы процесса нитрования ароматических соединений.
- 9. Основные виды и характеристика процессов ректификации.
- 10. Теоретические основы процессов этерификации.

2.6.12. Химическая технология топлива и высокоэнергетических веществ

- 1. Теоретические основы процессов первичной переработки нефти и газа. Подготовка нефти к переработке.
- 2. Разделение нефти на фракции: основное оборудование ректификационных колонн; технология атмосферной перегонки нефти; вакуумная дистилляция.
- 3. Теоретические основы термических процессов переработки нефтяного сырья.
- 4. Общие сведения о катализаторах процессов каталитической переработки нефтяных фракций.
- 5. Теоретические основы и технологические особенности процесса каталитического крекинга нефтяного сырья.
- 6. Технологические основы процессов жидкофазной каталитической переработки углеводородных газов.
- 7. Теоретические основы и классификация гидрокаталитических процессов нефтепереработки.
- 8. Технологические основы процесса каталитического риформинга.
- 9. Процессы гидрооблагораживания нефтяного сырья.
- 10. Катализаторы гидрогенизационных процессов.

2.6.13. Процессы и аппараты химических технологий

- 1. Основы гидростатики и гидродинамики в аппаратах химических технологий.
- 2. Основы теплопередачи в аппаратах химических технологий.
- 3. Конструкции теплообменных аппаратов.
- 4. Основы массопередачи в аппаратах химических технологий.
- 5. Виды массообменных процессов и конструкции массообменных аппаратов.
- 6. Классификация химических реакторов и их отличительные особенности.
- 7. Основные законы химической кинетики и термодинамики.
- 8. Основы макрокинетики химических процессов.
- 9. Основы промышленного катализа.
- 10. Основы системного анализа процессов химической технологии.

2.6.14. Технология силикатных и тугоплавких неметаллических материалов

- 1. Кристаллическое состояние силикатов и тугоплавких неметаллических соединений.
- 2. Аморфное состояние силикатов и тугоплавких неметаллических соединений.
- 3. Твёрдые растворы в силикатах и оксидах, изоморфизм в силикатных и оксидных минералах.
- 4. Строение и свойства расплавов и стёкол тугоплавких неорганических соединений.
- 5. Химические и физические критерии стеклообразования из расплавов.
- 6. Фазовые равновесия в однокомпонентных системах тугоплавких неметаллических соединений. Диаграммы состояний. Полиморфизм силикатов и тугоплавких неметаллических соединений.
- 7. Фазовые равновесия в бинарных системах тугоплавких оксидов. Диаграммы состояний бинарных систем оксидов.
- 8. Фазовые равновесия в тройных системах тугоплавких оксидов. Диаграммы состояния тройных систем оксидов.
- 9. Физико-химические процессы синтеза и спекания тугоплавких неметаллических соединений в твердой фазе и с участием расплава.
- 10. Основы технологии материалов и изделий из тугоплавких неметаллических соединений: технология керамики и огнеупоров, технология стекла и ситаллов, технология вяжущих материалов.

3. Методические указания по процедуре оценивания вступительного испытания

Максимальное количество баллов за вступительное испытание – 100 баллов. За 1 часть теоретическую максимум – 50 баллов.

Критерии оценки ответа на вступительном испытании по специальности 1 часть:

ВИ, балл	Определение оценки
0 ÷ 5 баллов	При ответе абитуриента обнаружились значительные пробелы в
	знаниях по научной специальности, допущены грубые ошибки.
	Уровень знаний не позволяет приступить к освоению программы
	подготовки научных и научно-педагогических кадров в аспирантуре.
6 ÷ 25 баллов	Абитуриент показал хорошее знание материала по научной
	специальности. Имеются навыки аргументации и отстаивания
	собственной точки зрения. Однако материал излагался
	непоследовательно, очевидны пробелы в знаниях. При ответе на
	дополнительные вопросы были допущены отдельные неточности.
26 ÷ 40 баллов	Абитуриент показал всестороннее, глубокое и систематическое
	знание материала по научной специальности; ответ отличался
	точностью использованных понятий; материал излагался
	последовательно и логично. Было продемонстрировано умение
	формулировать, аргументировать и отстаивать свою точку зрения.
	Однако не на все дополнительные вопросы были даны полные и
	последовательные ответы.
41 ÷ 50 баллов	1 , ,
	знание материала по научной специальности; ответ отличался
	точностью использованных понятий; материал излагался
	последовательно и логично. Было продемонстрировано умение
	формулировать, аргументировать и отстаивать свою точку зрения.
	На дополнительные вопросы были получены полные и
	последовательные ответы.

За 2 часть собеседование максимум – 50 баллов.

Критерии оценки ответа на вступительном испытании по специальности 2 часть:

ВИ, балл	Определение оценки
0 ÷ 5 баллов	только устное общение и нет ни мотивационного письма, ни
	рекомендательного письма от руководителя, научный задел
	отсутствует.
6 ÷ 15 баллов	есть мотивационное письмо или рекомендательное письмо
	предполагаемого научного руководителя, но по результату
	собеседования научный задел небольшой, мотивация низкая.
16 ÷ 25 баллов	есть мотивационное письмо и рекомендательное письмо
	предполагаемого научного руководителя, но по результату
	собеседования научный задел небольшой, мотивация низкая.
26 ÷ 40 баллов	есть мотивационное письмо и рекомендательное письмо
	предполагаемого научного руководителя, научный задел
	небольшой, но абитуриент мотивирован.
41 ÷ 50 баллов	есть мотивационное письмо и рекомендательное письмо
	предполагаемого научного руководителя, большой научный
	задел, абитуриент мотивирован.

4. Рекомендуемая литература

2.6.1. Металловедение и термическая обработка металлов и сплавов

- 1. Солнцев, Ю. П. Специальные материалы в машиностроении : учебник / Ю. П. Солнцев, Е. И. Пряхин, В. Ю. Пиирайнен. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2019. 664 с. ISBN 978-5-8114-3921-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/118630 (дата обращения: 07.04.2025). Режим доступа: для авториз. пользователей.
- 2. Земсков, Ю. П. Материаловедение / Ю. П. Земсков. 2-е изд., стер. Санкт-Петербург: Лань, 2024. 188 с. ISBN 978-5-507-48829-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/364784 (дата обращения: 07.04.2025). Режим доступа: для авториз. пользователей.» (Земсков, Ю. П. Материаловедение / Ю. П. Земсков. 2-е изд., стер. Санкт-Петербург: Лань, 2024. ISBN 978-5-507-48829-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/364784 (дата обращения: 07.04.2025). Режим доступа: для авториз. пользователей. С. 2.).
- 3. Гетьман, А. А. Материаловедение. Технология конструкционных материалов : учебник для вузов / А. А. Гетьман. 2-е изд., стер. Санкт-Петербург : Лань, 2025. 492 с. ISBN 978-5-507-50509-8. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/441662. Режим доступа: для авториз. пользователей.
- 4. Материаловедение : учебное пособие для вузов / Н. Р. Варгасов, М., М. Радкевич Москва : Вологда : Инфра-Инженерия, 2022. 205 с. : ил. ISBN: 9785972909469.
- 5. Термическая обработка металлов и их сплавов : практикум : учебное пособие / Н. А. Зарипова, А. В. Шимохин, А. С. Союнов, Д. А. Воробьев. Омск : Омский ГАУ, 2020. 84 с. ISBN 978-5-89764-902-0. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/153553. Режим доступа: для авториз. пользователей

2.6.5. Порошковая металлургия и композиционные материалы

1. Перевай, Т. А. Порошковая металлургия : учебное пособие / Т. А. Перевай. - Севастополь : СевГУ, 2024. - 81 с. - Текст : электронный // Лань : электронно-библиотечная система. - URL: https://e.lanbook.com/book/417359 - Режим доступа: для авториз. пользователей.

- 2. Савич, В. В. Порошковая металлургия: современное состояние и перспективы развития: монография / В. В. Савич, С. А. Оглезнева. Пермь: ПНИПУ, 2021. 695 с. ISBN 978-5-398-02664-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/239906. Режим доступа: для авториз. пользователей.
- 3. Аникин В. Н. Теоретические основы спекания порошков. Кинетика спекания реальных материалов. Курс лекций: учебное пособие / В. Н. Аникин, И. В. Блинков, В. С. Челноков. Москва: МИСИС, 2014. 121 с. ISBN 978-5-87623-699-9 Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/47441. Режим доступа: для авториз. пользователей.
- 4. Кузина, А. А. Композиционные материалы : учебное пособие / А. А. Кузина. Самара : Самарский университет, 2023. 64 с. ISBN 978-5-7883-2008-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/406751. Режим доступа: для авториз. пользователей.
- 5. Полимерные композиционные материалы: структура, свойства, технология: учебное пособие / под ред. А. А. Берлина. 4-е изд., испр. и доп. Санкт-Петербург: Профессия, 2014. 591 с.: ил.. Библиография в конце глав. ISBN 978-5-91884-056-6. http://catalog.lib.tpu.ru/catalogue/advanced/document/RU%5CTPU%5Cbook%5C277933

2.6.6. Нанотехнологии и наноматериалы

- 1. Рыжонков, Д. И. Наноматериалы : учебное пособие / Д. И. Рыжонков, В. В. Лёвина, Э. Л. Дзидзигури ; художник С. Инфантэ. 6-е изд. Москва : Лаборатория знаний, 2021. 368 с. ISBN 978-5-93208-550-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/176410 (дата обращения: 30.05.2025). Режим доступа: для авториз. пользователей.
- 2. Рамбиди, Николай Георгиевич. Структура и свойства наноразмерных образований. Реалии сегодняшней нанотехнологии : учебное пособие / Н. Г. Рамбиди. Москва : Интеллект, 2011. 376 с.: ил. Библиогр.: с. 375. ISBN 978-5-91559-089-1. Текст : непосредственный.
- 3. Головин, Ю. И. Основы нанотехнологий / Ю. И. Головин. Москва : Машиностроение, 2012. 656 с. ISBN 978-5-94275-662-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/5793 (дата обращения: 30.05.2025). Режим доступа: для авториз. пользователей.
- 4. Гусев А. И. Наноматериалы, наноструктуры, нанотехнологии. М.: ФИЗМАТЛИТ, 2005. 416 с Текст : непосредственный.
- 5. Методы компактирования и консолидации наноструктурных материалов и изделий: учебное пособие / О. Л. Хасанов, Э. С. Двилис, З. Г. Бикбаева, А. А. Качаев. 3-е изд. Москва: Лаборатория знаний, 2020. 272 с. ISBN 978-5-00101-716-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/135502 (дата обращения: 30.05.2025). Режим доступа: для авториз. пользователей.

2.6.8. Технология редких, рассеянных и радиоактивных элементов

- 1. Тураев Н.С., Жерин И.И. Химия и технология урана. М.: Руды и металлы, 2006. 396 с.
- 2. Редкие и рассеянные элементы: химия и технология. Учебник для вузов. В 3-х книгах. Кн. 3 / С. С. Коровин, В. И. Букин, П. И. Фёдоров, А. М. Резник; под ред. С. С. Коровина М.: «МИСИС», 2003. 440 с.: ил. Текст : непосредственный.

- 3. Коровин, Сергей Сергеевич. Редкие и рассеянные элементы : химия и технология. Учебник для вузов. В 3 книгах. Кн. 2 / С. С. Коровин, Д. В. Дробот, П. И.Федоров; под ред. С. С. Коровина. Москва : Изд-во МИСиС, 1999. 464 с.: ил. Текст : непосредственный.
- 4. Вольдман Г. М. Теория гидрометаллургических процессов: учебное пособие для вузов М.: Интермет Инжиниринг, 2003. 464с.
- 5. Зеликман А. Н. Металлургия редких металлов: учебное пособие. М.: Металлургия, 1991. 431с.

2.6.10. Технология органических веществ

- 1. Химическая технология органических веществ: учеб. пособие / Т.П. Дьячкова, В.С. Орехов, М.Ю. Субочева, Н.В. Воякина. Тамбов: Изд-во Тамб. гос. техн. унта, 2007. 172 с.
- 2. Химическая технология органических веществ: учебное пособие / Т.П. Дьячкова, В.С. Орехов, К.В. Брянкин, М.Ю. Субочева. Тамбов: Изд-во Тамб. гос. техн. унта, 2008. Ч. 2. 100 с.
- 3. Химическая технология органических веществ: учебное пособие / М.Ю. Субочева, А.П. Ликсутина, М.А. Колмакова, А.А. Дегтярев. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2009. Ч. 3. 80 с.
- 4. Химическая технология органических веществ: учебное пособие / В.С. Орехов, М.Ю. Субочева, А.А. Дегтярёв, Д.Н. Труфанов. Тамбов: Изд-во ГОУ ВПО ТГТУ, 2010. Ч. 4. 80 с.

2.6.12. Химическая технология топлива и высокоэнергетических веществ

- 1. Ахметов С.А. Технология глубокой переработки нефти и газа: учебное пособие для вузов / С. А. Ахметов. 2-е изд., перераб. и доп.. Санкт-Петербург: Недра, 2013. 541 с.
- 2. Капустин В.М. Химия и технология переработки нефти : учебник / В. М. Капустин, М. Г. Рудин; Российский государственный университет нефти и газа им. И. М. Губкина (РГУ Нефти и Газа). Москва: Химия, 2013. 496 с.
- 3. Потехин, В. М. Основы теории химических процессов технологии органических веществ и нефтепереработки: учебник / В. М. Потехин, В. В. Потехин. 3-е изд., испр. и доп. Санкт-Петербург: Лань, 2022. ISBN 978-5-8114-1662-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/211751 (дата обращения: 05.06.2025) Режим доступа: для авториз. пользователей.
- 4. Потехин, В. М. Химия и технология углеводородных газов и газового конденсата : учебник для вузов / В. М. Потехин. 5-е изд., испр. и доп. Санкт-Петербург : Лань, 2025. 776 с. ISBN 978-5-507-50273-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/442070 (дата обращения: 05.06.2025). Режим доступа: для авториз. пользователей.
- 5. Ушева Н.В., Кравцов А.В. Макрокинетика химических процессов и расчет реакторов: учебное пособие. 2-е изд. Томск: ТПУ, 2013. 100 с. Режим доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m267.pdf (дата обращения: 05.06.2025)

2.6.13. Процессы и аппараты химических технологий

- 1. Касаткин А.Г. Основные процессы и аппараты химической технологии: учебник для вузов М.: Альянс, 2014, 750 с.
- 2. Иванчина Э.Д., Чернякова Е.С., Белинская Н.С., Ивашкина Е.Н. Системный анализ процессов и аппаратов химической технологии: учебное пособие. Томск: Изд-во Томского политехнического университета, 2017. 115 с. Режим доступа: http://www.lib.tpu.ru/fulltext2/m/2018/m003.pdf

- 3. Швалев Ю.Б., Горлушко Д.А. Общая химическая технология. Ч. 1: Химические процессы и реакторы: учебное пособие [Электронный ресурс] / Национальный исследовательский Томский политехнический университет (ТПУ); Национальный исследовательский Томский политехнический университет, Инженерная школа новых производственных технологий; сост. Ю. Б. Швалев; Д. А. Горлушко. 2-е изд., доп.. Томск: Изд-во ТПУ, 2019. Режим доступа: https://www.lib.tpu.ru/fulltext2/m/2019/m036.pdf
- 4. Ушева Н.В., Кравцов А.В. Макрокинетика химических процессов и расчет реакторов: учебное пособие. 2-е изд. Томск: ТПУ, 2013. 100 с. Режим доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m267.pdf
- 5. Физическая химия : учебник для вузов / А. Г. Стромберг, Д. П. Семченко ; под ред. А. Г. Стромберга. 7-е изд., стер. М.: Высшая школа, 2009. 527 с.

2.6.14. Технология силикатных и тугоплавких неметаллических материалов

- 1. Андрианов Н.Т., Балкевич В.Л., Беляков А.В. и др. Химическая технология керамики /Под ред. Гузмана И.Я. М.: РИФ «Стройматериалы», 2012, 496 с.
- 2. Классен В.К. Технология и оптимизация производства цемента. Белгород: Изд-во БГТУ, 2012, 308 с.
- 3. Власова С. Г. Основы химической технологии стекла: учебное пособие /С. Г. Власова. Екатеринбург: УрФУ, 2013. 108 с. ISBN 978-5-7996-0930-6. Текст: электронный //Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/98385 (дата обращения: 26.06.2024). Режим доступа: для авторизованных пользователей.
- 4. Хабас Т.А. Физика и химия твердых неметаллических и силикатных материалов [Электронный ресурс]: учебное пособие/ Т. А. Хабас, В. И. Верещагин; ТПУ, ИФВТ, Томск: Изд-во ТПУ, 2013.- http://www.lib.tpu.ru/fulltext2/m/2014/m115.pdf (дата обращения: 26.06.2024).
- 5. Салахов А. М. Керамика: исследование сырья, структура, свойства: учебное пособие / А. М. Салахов, Р. А. Салахова. Казань: КНИТУ, 2013. 316 с. ISBN 978-5-7882-1480-1. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/73280 (дата обращения: 26.06.2024). Режим доступа: для авторизованных пользователей.
- 6. Лебухов В. И. Физико-химические методы исследования: учебник/В. И. Лебухов А. И. Окара, Л. П. Павлюченкова. Санкт-Петербург: Лань, 2022. 480 с. ISBN 978-5-8114-1320-1. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/211055 (дата обращения: 25.10.2024). Режим доступа: для авторизованных пользователей.